Chapter 2

Basic Electrophysiology
Objectives

- Define the absolute, relative refractory, and supernormal periods and their location in the cardiac cycle.
- Describe the normal sequence of electrical conduction through the heart.
Objectives

- Describe the location, function, and (where appropriate), the intrinsic rate of the following structures: SA node, atrioventricular (AV) junction, bundle branches, and Purkinje fibers.
- Differentiate the primary mechanisms responsible for producing cardiac dysrhythmias.
- Describe reentry.
- Explain the purpose of electrocardiographic monitoring.
- Identify the limitations of the electrocardiogram (ECG).
- Differentiate between frontal plane and horizontal plane leads.
- Describe correct anatomic placement of the standard limb leads, augmented leads, and chest leads.
- Relate the cardiac surfaces or areas represented by the electrocardiogram leads.
Objectives

- Identify the numeric values assigned to the small and large boxes on ECG paper.
- Identify how heart rates, durations, and amplitudes may be determined from electrocardiographic recordings.
- Define and describe the significance of each of the following as they relate to cardiac electrical activity: P wave, QRS complex, T wave, U wave, PR segment, TP segment, ST segment, PR interval, QRS duration, and QT interval.
- Recognize the changes on the electrocardiogram that may reflect evidence of myocardial ischemia and injury.
- Define the term artifact and explain methods that may be used to minimize its occurrence.
- Describe a systematic approach to the analysis and interpretation of cardiac dysrhythmias.
Types of Cardiac Cells

- **Myocardial cells**
 - Working or mechanical cells
 - Responsible for contraction

- **Pacemaker cells**
 - Specialized cells of electrical conduction system
 - Spontaneously generate and conduct impulses
Properties of Cardiac Cells

- Automaticity
 - Ability of pacemaker cells to initiate an electrical impulse without being stimulated from another source
Properties of Cardiac Cells

● Excitability (irritability)
 ➢ Ability of cardiac muscle cells to respond to an outside stimulus
Properties of Cardiac Cells

- Conductivity
 - Ability of a cardiac cell to receive an electrical stimulus and conduct that impulse to an adjacent cardiac cell
Properties of Cardiac Cells

- **Contractility**
 - Ability of cardiac cells to shorten, causing cardiac muscle contraction in response to an electrical stimulus
Phase 0—Depolarization

- Begins when the cell receives an impulse
 - Sodium moves rapidly into cell
 - Potassium leaves cell
 - Calcium moves slowly into cell
- Cell depolarizes; contraction begins
- Responsible for QRS complex on the ECG
Phase 1—Early Repolarization

- Na+ channels partially close
- Brief outward movement of K+
- Results in fewer positive electrical charges within the cell
Phase 2—Plateau Phase

- Repolarization continues relatively slowly
 - Slow inward movement of Ca++
 - Slow outward movement of K+
- Responsible for ST segment on ECG
Phase 3—Final Rapid Repolarization

- K⁺ flows quickly out of the cell
- Entry of Ca++ and Na⁺ stops
 - Cell becomes progressively more electrically negative and more sensitive to external stimuli
- Corresponds with T wave on the ECG
Phase 4—Return to Resting State

- Heart is "polarized" during this phase
 - Ready for discharge
- Cell will remain in this state until reactivated by another stimulus
Antiarrhythmics

- **Arrhythmia**
- **Dysrhythmia**
- **Antiarrhythmics**
 - Medications used to correct irregular heartbeats and slow down hearts that beat too fast
 - Classified by their effects on the cardiac action potential
Refractory Periods

● Refractoriness
 ➢ The period of recovery that cells need after being discharged before they are able to respond to a stimulus
Refractory Periods

- **Absolute refractory period**
 - Cells cannot be stimulated to conduct an electrical impulse, no matter how strong the stimulus
 - Onset of QRS complex to approximate peak of T wave
Refractory Periods

- Relative refractory period
 - Cardiac cells can be stimulated to depolarize if the stimulus is strong enough
 - Corresponds with downslope of T wave
Refractory Periods

- **Supernormal period**
 - Weaker than normal stimulus can cause cardiac cells to depolarize
 - Corresponds with end of T wave

1 = Absolute refractory period
2 = Relative refractory period
3 = Supernormal period
The Conduction System

- Conduction system
 - Specialized electrical (pacemaker) cells
 - Arranged in a system of pathways

- Primary pacemaker
 - Sinoatrial (SA) node
The Conduction System

- **Atria**
 - Fibers of SA node connect directly with fibers of atria
 - Impulse leaves SA node
 - Spreads from cell to cell across atrial muscle
The Conduction System

- Internodal pathways
 - Impulse is spread to AV node via internodal pathways
 - Merge gradually with cells of AV node
The Conduction System

- **AV junction**
 - Area of specialized conduction tissue
 - Provides electrical links between atrium and ventricle
The Conduction System

• AV node
 ➢ Located in floor of right atrium
 • Supplied by right coronary artery in most people
 ➢ Delays conduction of impulse from atria to the ventricles
 • Allows time for atria to empty into ventricles
The Conduction System

- AV node
 - Divided into three functional regions according to their action potentials and responses to electrical and chemical stimulation
 - Atrionodal (AN)
 - Nodal (N) region
 - Nodal-His (NH)
The Conduction System

- **Bundle of His**
 - Connects AV node with bundle branches
 - Pacemaker cells have an intrinsic rate of 40 to 60 bpm
 - Conducts impulse to right and left bundle branches
The Conduction System

- Right bundle branch

- Left bundle branch
 - Divides into three fascicles
 - Anterior fascicle
 - Posterior fascicle
 - Septal fascicle
The Conduction System

- Purkinje fibers
 - Receive impulse from bundle branches
 - Relay it to ventricular myocardium
 - Pacemaker cells have an intrinsic rate of 20 to 40 bpm
Conduction System Review
Causes of Dysrhythmias
Enhanced Automaticity

- Cardiac cells not normally associated with a pacing function begin to depolarize spontaneously or

- Pacemaker sites other than the SA node increase their firing rate beyond that considered normal
Triggered Activity

- Abnormal electrical impulses occur during repolarization (afterdepolarizations), when cells are normally quiet
 - Requires a stimulus to initiate depolarization
Reentry (Reactivation)

- An impulse returns to stimulate tissue that was previously depolarized.
Escape Beats or Rhythms

- Lower pacemaker site produces electrical impulses
 - Assumes responsibility for pacing the heart

- “Protective” mechanisms
 - Maintain cardiac output
 - Originate in the AV junction or the ventricles
Conduction Disturbances

- May occur because of:
 - Trauma
 - Drug toxicity
 - Electrolyte disturbances
 - Myocardial ischemia or infarction

- Conduction may be too rapid or too slow
The Electrocardiogram (ECG)
The ECG

- The ECG is a voltmeter
 - Records electrical voltages (potentials) generated by depolarization of heart muscle
The ECG

- Can provide information about:
 - The orientation of the heart in the chest
 - Conduction disturbances
 - The electrical effects of medications and electrolytes
 - The mass of cardiac muscle
 - The presence of ischemic damage
The ECG

- Does not provide information about the mechanical (contractile) condition of the myocardium

- Evaluated by assessment of pulse and blood pressure
Electrodes

- Applied at specific locations on the patient's chest wall and extremities
- One end of a monitoring cable is attached to the electrode
- The other end is attached to an ECG machine
- The cable conducts current back to the cardiac monitor
ECG Monitoring
ECG Monitoring
ECG Monitoring
ECG Monitoring
ECG Monitoring

[Image of a medical device displaying an ECG monitor]
ECG Monitoring
Leads

- A record of electrical activity between two electrodes
- Allow viewing of the heart’s electrical activity in two different planes
 - Frontal (coronal)
 - Horizontal (transverse)
- Each lead records the average current flow at a specific time in a portion of the heart
Frontal Plane Leads

- Six leads view the heart in the frontal plane
 - 3 bipolar leads
 - 3 unipolar leads
Frontal Plane Leads

- **Bipolar lead**
 - A lead that consists of a positive and negative electrode
 - Leads I, II, and III
Frontal Plane Leads

- **Unipolar lead**
 - A lead that consists of a single positive electrode and a reference point
 - **Augmented limb leads**
 - Leads aVR, aVL, and aVF
Standard Limb Leads

- Leads I, II, and III
- Right arm electrode is always negative
- Left leg electrode is always positive
Lead I

- Records difference in electrical potential between left arm (+) and right arm (−) electrodes
- Views lateral wall of left ventricle
Lead II

- Records difference in electrical potential between left leg (+) and right arm (−) electrodes

- Views inferior surface of left ventricle
Lead III

- Records difference in electrical potential between left leg (+) and left arm (−) electrodes

- Views inferior surface of left ventricle
Standard Limb Leads

<table>
<thead>
<tr>
<th>Lead</th>
<th>Positive Electrode</th>
<th>Negative Electrode</th>
<th>Heart Surface Viewed</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Left arm</td>
<td>Right arm</td>
<td>Lateral</td>
</tr>
<tr>
<td>II</td>
<td>Left leg</td>
<td>Right arm</td>
<td>Inferior</td>
</tr>
<tr>
<td>III</td>
<td>Left leg</td>
<td>Left arm</td>
<td>Inferior</td>
</tr>
</tbody>
</table>
Augmented Limb Leads

- Leads aVR, aVL, aVF
 - A = augmented
 - V = voltage
 - R = right arm
 - L = left arm
 - F = foot (usually left leg)
Augmented Limb Leads

- Lead aVR
 - Views the heart from the right shoulder
 - Does not view any wall of the heart
Augmented Limb Leads

- Lead aVL
 - Views the heart from the left shoulder
 - Oriented to the lateral wall of the left ventricle
Augmented Limb Leads

- Lead aVF
 - Views the heart from the left foot (leg)
 - Views the inferior surface of the left ventricle
Augmented Leads

<table>
<thead>
<tr>
<th>Lead</th>
<th>Positive Electrode</th>
<th>Heart Surface Viewed</th>
</tr>
</thead>
<tbody>
<tr>
<td>aVR</td>
<td>Right arm</td>
<td>None</td>
</tr>
<tr>
<td>aVL</td>
<td>Left arm</td>
<td>Lateral</td>
</tr>
<tr>
<td>aVF</td>
<td>Left leg</td>
<td>Inferior</td>
</tr>
</tbody>
</table>
Horizontal Plane Leads

- View the heart as if the body were sliced in half horizontally

- Directions
 - Anterior
 - Posterior
 - Right
 - Left
Horizontal Plane Leads

- Six chest (precardial or “V”) leads view the heart in the horizontal plane

- Chest leads
 - V_1
 - V_2
 - V_3
 - V_4
 - V_5
 - V_6
Chest Lead Placement
Chest Leads

<table>
<thead>
<tr>
<th>Lead</th>
<th>Positive Electrode Position</th>
<th>Heart Surface Viewed</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_1</td>
<td>Right side of sternum, 4(^{th}) intercostal space</td>
<td>Septum</td>
</tr>
<tr>
<td>V_2</td>
<td>Left side of sternum, 4(^{th}) intercostal space</td>
<td>Septum</td>
</tr>
<tr>
<td>V_3</td>
<td>Midway between V_2 and V_4</td>
<td>Anterior</td>
</tr>
<tr>
<td>V_4</td>
<td>Left midclavicular line, 5(^{th}) intercostal space</td>
<td>Anterior</td>
</tr>
<tr>
<td>V_5</td>
<td>Left anterior axillary line; same level as V_4</td>
<td>Lateral</td>
</tr>
<tr>
<td>V_6</td>
<td>Left midaxillary line; same level as V_4</td>
<td>Lateral</td>
</tr>
</tbody>
</table>
Right Chest Leads

- Used to view the right ventricle
- Placement identical to standard chest leads except on right side of chest
Right Chest Lead Placement
Posterior Chest Leads

- Used to view posterior surface of heart

- Use same horizontal line as V_4 to V_6
 - V_7 - posterior axillary line
 - V_8 - posterior scapular line
 - V_9 - left border of spine
Posterior Chest Lead Placement

![Diagram of posterior chest lead placement showing V7, V8, V9, V9R, V8R, and V7R leads.]
Posterior Chest Lead Placement
Posterior Chest Lead Placement
Posterior Chest Lead Placement
Posterior Chest Lead Placement
Modified Chest Leads

- Modified chest leads (MCLs)
 - Bipolar chest leads that are variations of the unipolar chest leads
 - Each MCL consists of a positive and negative electrode applied to a specific location on the chest
MCL₁

- A variation of chest lead V₁
 - Negative electrode below left clavicle toward left shoulder
 - Positive electrode right of sternum in 4th intercostal space

- Views ventricular septum
MCL⁶

- A variation of chest lead V₆
 - Negative electrode below left clavicle toward left shoulder
 - Positive electrode 5th intercostal space, left midaxillary line

- Views low lateral wall of left ventricle
What Each Lead “Sees”
Leads II, III, and aVF

- Positive electrode on left leg.
- Each lead “sees” inferior wall of left ventricle.
Leads I and aVL

- Positive electrode on left arm.
- Each lead “sees” lateral wall of left ventricle.
Leads V_5 and V_6

- Positive electrode on axillary area of left chest.
- Each lead “sees” lateral wall of left ventricle.
Leads V_3 and V_4

- Positive electrode on anterior chest.
- Each lead “sees” anterior wall of left ventricle.
Leads V_1 and V_2

- Positive electrode next to sternum.
- Each lead “sees” septal wall of left ventricle.
What Each Lead “Sees” — Summary

<table>
<thead>
<tr>
<th>Leads</th>
<th>Heart Surface Viewed</th>
</tr>
</thead>
<tbody>
<tr>
<td>II, III, aVF</td>
<td>Inferior</td>
</tr>
<tr>
<td>V₁, V₂</td>
<td>Septal</td>
</tr>
<tr>
<td>V₃, V₄</td>
<td>Anterior</td>
</tr>
<tr>
<td>I, aVL, V₅, V₆</td>
<td>Lateral</td>
</tr>
</tbody>
</table>
ECG Paper
ECG Paper

- ECG paper is graph paper made up of small and larger, heavy-lined squares
 - Smallest squares are 1 mm wide and 1 mm high
 - 5 small squares between the heavier black lines
 - 25 small squares within each large square
Horizontal Axis = Time

- Width of each small box = 0.04 second.
- Width of each large box (5 small boxes) = 0.20 second
Horizontal Axis = Time

- 5 large boxes (each consisting of 5 small boxes) = 1 second.
- 15 large boxes = 3 seconds.
- 30 large boxes = 6 seconds.
Vertical Axis = Voltage/Amplitude

- Size or amplitude of a waveform is measured in millivolts (voltage) or millimeters (amplitude).
Calibration

- $1 \text{ mV} = 10 \text{ mm}$
Waveforms
Terms

- Baseline (isoelectric line)
- Waveform
- Segment
- Interval
- Complex
Waveform Deflections

- If the wave of depolarization moves toward the positive electrode, the waveform recorded will be upright
Waveform Deflections

- If the wave of depolarization moves toward the negative electrode, the waveform recorded will be upside down (inverted)
Waveform Deflections

- A biphasic (partly positive, partly negative) waveform or a straight line is recorded when the wave of depolarization moves perpendicularly to the positive electrode.

![Diagram of ECG leads and deflections](image)
P Wave

- Represents atrial depolarization and spread of the impulse throughout right and left atria
P Wave

- **Beginning**
 - First abrupt or gradual deviation from the baseline

- **End**
 - Point at which it returns to the baseline
Normal P Wave

- Smooth and rounded
- No more than 2.5 mm in height
- No more than 0.11 sec in duration
- Upright in leads I, II, aVF, and V₂ through V₆
Abnormal P Waves

- Normal
- Notched
- Peaked
- Inverted
QRS Complex

- Normally follows each P wave
- Consists of Q wave, R wave, and S wave
- Represents spread of electrical impulse through the ventricles
 - Ventricular depolarization
Q Wave

- First negative, or downward, deflection following the P wave
 - Always a negative waveform

- Represents depolarization of interventricular septum
Q Wave

- **Normal (physiologic) Q waves**
 - Less than 0.04 sec
 - Less than 1/3 the height of R wave in that lead

- **Abnormal (pathologic) Q waves**
 - More than 0.04 sec
 - More than 1/3 the height of the following R wave in that lead
R Wave

- The first positive, or upward, deflection following the P wave
 - Always positive
S Wave

- A negative waveform following the R wave
 - Always negative
- R and S waves represent depolarization of the right and left ventricles
Limb Leads—Waveform Comparison
Normal QRS Complex

- Measure the QRS complex with the longest duration and clearest onset and end

- Normal QRS duration is 0.10 seconds or less
Abnormal QRS Complexes

- An abnormal QRS complex is greater than 0.10 sec in duration
QRS Variations

- If the complex consists entirely of a negative waveform, it is called a QS wave

- If the QRS complex consists entirely of a positive waveform, it is called an R wave
QRS Variations

- If there are two positive deflections in the same complex, the second is called R prime and is written as R'

- If there are two negative deflections following an R wave, the second is written as S'
T Wave

- Represents ventricular repolarization
The normal T wave is slightly asymmetric
Normal T Waves

- Slightly asymmetric
- Usually 5 mm or less in height in any limb lead
- Usually 10 mm or less in height in any chest lead
- Usually 0.5 mm or more in height in leads I and II
Abnormal T Waves

- The T wave following an abnormal QRS complex is usually opposite in direction of the QRS
- Negative (inverted) T waves suggest myocardial ischemia
Abnormal T Waves

- Tall, pointed (peaked) T waves are commonly seen in hyperkalemia
Abnormal T Waves

- Cerebral T waves
U Waves

- Significance is not definitely known
 - May represent repolarization of Purkinje fibers
- Not easily identified due to its low amplitude
Normal U Waves

- Rounded and symmetric
- Usually less than 1.5 mm in height and smaller than the preceding T wave
Abnormal U Waves

- In general, a U wave more than 1.5 mm in height in any lead is considered abnormal.
- Abnormally tall U waves may be the result of:
 - Electrolyte imbalance
 - Medication
 - Hyperthyroidism
 - Central nervous system disease
 - Long QT syndrome
Segments

● Segment
 ➢ A line between waveforms
 ➢ Named by waveform that precedes or follows it

● Important segments:
 ➢ PR segment
 ➢ ST segment
 ➢ TP segment
PR segment

• Part of the PR interval
 - Horizontal line between end of P wave and beginning of QRS complex
 - Normally isoelectric (flat)
TP Segment
ST Segment

- Portion of the ECG tracing between QRS complex and T wave
- Represents early part of repolarization of right and left ventricles
Normal ST Segment

- Begins with the end of the QRS complex and ends with the onset of the T wave
- Limb leads
 - Isoelectric (flat)
 - May normally be slightly elevated or depressed (usually by less than 1 mm)
- Chest leads
 - ST segment may vary from -0.5 to +2 mm
The point at which the QRS complex and the ST segment meet = “J point” or junction
ST Segment Deviation
ST Segment

- A horizontal ST segment suggests ischemia
- Digitalis causes ST segment depression (scoop)
 - “Dig dip”
Intervals

- Interval
 - A waveform and a segment

- Important intervals
 - PR interval
 - QT interval
PR Interval (PRI)

- P wave + PR segment = PR interval
- Normally measures 0.12–0.20 sec
PR Interval (PRI)

- Begins with the onset of the P wave and ends with the onset of the QRS complex
Abnormal PR Interval

- Long PR interval (greater than 0.20 sec)
 - Indicates the impulse was delayed as it passed through the atria or AV junction

- Short PR interval (less than 0.12 sec)
 - May be seen when the impulse originates in the atria close to the AV node or in the AV junction
QT Interval

- QT interval represents total ventricular activity—the time from ventricular depolarization (activation) to repolarization (recovery)

- Duration of the QT interval varies according to age, gender, and heart rate
QT Interval

- Measured from beginning of QRS complex to end of T wave
 - If no Q wave, measure from beginning of R wave to end of T wave
To rapidly determine the QT interval:

- Measure the interval between two consecutive R waves (R-R interval) and divide the number by two
- Measure the QT interval
- If the measured QT interval is less than half the R-R interval, it is probably normal
R-R Intervals

- Used to determine ventricular rate and regularity
P-P Intervals

- Used to determine atrial rate and regularity
Artifact

- Distortion of an ECG tracing by electrical activity that is noncardiac in origin

- Can mimic various cardiac dysrhythmias, including ventricular fibrillation

- Patient evaluation **essential** before initiating any medical intervention
Artifact—Causes

- Loose electrodes
- Broken ECG cables or broken wires
- Muscle tremor
- Patient movement
- External chest compressions
- 60-cycle interference
Artifact—Loose Electrodes
Artifact—Muscle Tremor
Artifact—60-Cycle Interference
Analyzing a Rhythm Strip

- Assess rhythm/regularity
- Ventricular rhythm
 - Measure the distance between two consecutive R-R intervals
 - Compare with other R-R intervals
- Atrial rhythm
 - Measure the distance between two consecutive P-P intervals
 - Compare with other P-P intervals
- Variation of plus or minus 10% is acceptable
Terminology

- Essentially regular rhythm
- Irregular rhythm
- Regularly irregular rhythm
- Irregularly irregular rhythm
Analyzing a Rhythm Strip

- What is the rate?

- A “tachycardia” exists if rate is more than 100 bpm

- A “bradycardia” exists if rate is less than 60 bpm
Six-Second Method

- Ventricular rate
 - Count the number of complete QRS complexes within a period of 6 sec
 - Multiply that number by 10 to determine the number of QRS complexes in 1 min
- May be used for regular and irregular rhythms
Large Box Method

- Count the number of large boxes between two consecutive waveforms (R-R interval or P-P interval) and divide into 300
- Best used if the rhythm is regular
Large Box Method

<table>
<thead>
<tr>
<th>Number of Large Boxes</th>
<th>Heart Rate (bpm)</th>
<th>Number of Large Boxes</th>
<th>Heart Rate (bpm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>300</td>
<td>6</td>
<td>50</td>
</tr>
<tr>
<td>2</td>
<td>150</td>
<td>7</td>
<td>43</td>
</tr>
<tr>
<td>3</td>
<td>100</td>
<td>8</td>
<td>38</td>
</tr>
<tr>
<td>4</td>
<td>75</td>
<td>9</td>
<td>33</td>
</tr>
<tr>
<td>5</td>
<td>60</td>
<td>10</td>
<td>30</td>
</tr>
</tbody>
</table>
Sequence Method

- Select an R wave that falls on a dark vertical line
 - Number the next 6 consecutive dark vertical lines as follows:
 - 300, 150, 100, 75, 60, and 50
 - Note where the next R wave falls in relation to the 6 dark vertical lines already marked—this is the heart rate
Small Box Method

- Count the number of small boxes between two consecutive waveforms (R-R interval or P-P interval) and divide into 1500
- Time consuming, but accurate
Analyzing a Rhythm Strip

- Identify and examine P waves
 - Look to the left of each QRS complex
 - Normally:
 - One P wave precedes each QRS complex
 - P waves occur regularly and appear similar in size, shape, and position
Analyzing a Rhythm Strip

- PR interval (PRI)
 - Normal PR interval is 0.12 to 0.20 sec
 - If PR intervals are the same, they are “constant”
 - If the PR intervals are different, is there a pattern?
 - Lengthening
 - Variable (no pattern)
Analyzing a Rhythm Strip

- QRS complexes
 - Identify the QRS complexes and measure their duration
 - Narrow (normal) if it measures 0.10 sec or less
 - Wide if it measures more than 0.10 sec
Analyzing a Rhythm Strip

- Measure the QT interval in the leads that show the largest amplitude T waves.

- If the measured QT interval is less than half the R-R interval, it probably is normal.
Analyzing a Rhythm Strip

- ST segment
 - Usually isoelectric in the limb leads
 - Determine presence of ST segment elevation or depression
Analyzing a Rhythm Strip

- T waves
 - Are the T waves upright and of normal height?
 - The T wave following an abnormal QRS complex is usually opposite in direction of the QRS
 - Negative T waves suggest myocardial ischemia
 - Tall, pointed (peaked) T waves are commonly seen in hyperkalemia
Analyzing a Rhythm Strip

- Interpret rhythm & evaluate clinical significance
 - Interpret the rhythm
 - Specify site of origin (pacemaker site) of the rhythm (sinus)
 - Specify mechanism (bradycardia) and ventricular rate
 - For example: Sinus bradycardia at 38 bpm
 - Evaluate patient’s clinical presentation to determine how he or she is tolerating the rate and rhythm
Questions?